Symbolic computation of high order compact difference schemes for three dimensional linear elliptic partial differential equations with variable coefficients
نویسندگان
چکیده
منابع مشابه
High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations
In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...
متن کاملReduced Systems for Three-Dimensional Elliptic Equations with Variable Coefficients
We consider large sparse nonsymmetric linear systems arising from finite difference discretization of three-dimensional (3D) convection-diffusion equations with variable coefficients. We show that performing one step of cyclic reduction yields a system of equations which is well conditioned and for which fast convergence can be obtained. A certain block ordering strategy is applied, and analyti...
متن کاملNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملTaylor collocation method for systems of high-order linear differential–difference equations with variable coefficients
Universit .2012.07.0 Abstract A Taylor collocation method has been developed to solve the systems of high-order linear differential–difference equations in terms of the Taylor polynomials. Using the Taylor collocation points, this method transforms differential–difference equation systems and the given conditions to matrix equations with unknown Taylor coefficients. By means of the obtained mat...
متن کاملSymbolic Computation of High-Order Exact Picard Iterates for Systems of Linear Differential Equations with Time-Periodic Coefficients
In symbolic manipulation packages such as MATHEMATICA it is possible to substitute the built-in function for integration by a user-programmed specific integration function and symbolically evaluate exact high-order Picard iterates for systems of linear differential equations with time-periodic parameter-dependent coefficients. With this technique we get excellent approximations in feasible CPU ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2002
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(01)00504-0